Direct imaging of macrovascular and microvascular contributions to BOLD fMRI in layers IV-V of the rat whisker-barrel cortex
نویسندگان
چکیده
The spatiotemporal characteristics of the hemodynamic response to increased neural activity were investigated at the level of individual intracortical vessels using BOLD-fMRI in a well-established rodent model of somatosensory stimulation at 11.7 T. Functional maps of the rat barrel cortex were obtained at 150 × 150 × 500 μm spatial resolution every 200 ms. The high spatial resolution allowed separation of active voxels into those containing intracortical macro vessels, mainly vein/venules (referred to as macrovasculature), and those enriched with arteries/capillaries and small venules (referred to as microvasculature) since the macro vessel can be readily mapped due to the fast T2 decay of blood at 11.7 T. The earliest BOLD response was observed within layers IV-V by 0.8s following stimulation and encompassed mainly the voxels containing the microvasculature and some confined macrovasculature voxels. By 1.2s, the BOLD signal propagated to the macrovasculature voxels where the peak BOLD signal was 2-3 times higher than that of the microvasculature voxels. The BOLD response propagated in individual venules/veins far from neuronal sources at later times. This was also observed in layers IV-V of the barrel cortex after specific stimulation of separated whisker rows. These results directly visualized that the earliest hemodynamic changes to increased neural activity occur mainly in the microvasculature and spread toward the macrovasculature. However, at peak response, the BOLD signal is dominated by penetrating venules even at layers IV-V of the cortex.
منابع مشابه
اثر تحریک الکتریکی هسته رافه خلفی بر پاسخ برانگیخته نورونهای لایه IV و V قشر بارل (بشکهای) در موش صحرایی
Effect of the Dorsal Raphe Nucleus Electrical Stimulation on Evoked Response of the IV Layers and V Barrel Cortical Neurons in Rat M.R Afarinesh MSc , V. Sheibani PhD , R. Farazifard MSc 1, M. Abasnegad PhD , A. Shamsi zadeh MSc Received: 17/09/06 Sent for Revision: 13/03/07 Received Revised Manuscript: 13/06/07 Accepted: 27/06/07 Background and Objective: Seretonergic pathway is one of the neu...
متن کاملEffects of Dimethyl Sulfoxide on Neuronal Response Characteristics in Deep Layers of Rat Barrel Cortex
Introduction: Dimethyl sulfoxide (DMSO) is a chemical often used as a solvent for waterinsoluble drugs. In this study, we evaluated the effect of intracerebroventricular (ICV) administration of DMSO on neural response characteristics (in 1200–1500 μm depth) of the rat barrel cortex. Methods: DMSO solution was prepared in 10% v/v concentration and injected into the later...
متن کاملEffect of phasic electrical locus coeruleus stimulation on inhibitory and excitatory receptive fields of layer V barrel cortex neurons in male rat
Introduction: It is believed that Locus Coeruleus (LC) influences the sensory information processing. However, its role in cortical surround inhibitory mechanism is not understood. In this experiment, using controlled mechanical displacement of whiskers we investigated the effect of phasic electrical stimulation of LC on response of layer V barrel cortical neurons in anesthetized rat. Methods: ...
متن کاملEffect of sensory deprivation and Locus Coeruleus (LC) electrical stimulation on the response properties of layer IV barrel cortex neurons in male rats
Introduction: Barrel cortex of rodents is responsible for sensory information processing from muzzle whiskers. Locus coeruleus (LC) as the main source of norepinephrine (NE) in the cortex, is effective on the sensory information processing. Methods: Rats were divided to 2 groups. One group underwent sensory deprivation (P4) and the other group served as control and did not undergo sensory d...
متن کاملThe effect of ibotonic acid lesion of the nucleus basalis of Meynert (NBM) on the response of cortical neurons in the rat barrel cortex
In the present study, the effect of NBM lesion on the temporal characteristics of response integration evoked by multiple whisker stimulations in the barrel cortex of rats was studied. Nucleus basalis of Meynert (NBM) projects to widespread areas of the cortex and provides the major cholinergic input (80%) to the cerebral cortex. In this study we examined the effects of NBM lesion on the respon...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- NeuroImage
دوره 59 2 شماره
صفحات -
تاریخ انتشار 2012